Contoh Soal Persamaan Kuadrat dan Cara Menghitungnya
Pijar Belajar
||0 Minute Read|Review
0
Persamaan dan fungsi kuadrat adalah salah satu materi dalam bidang studi matematika yang dipelajari di kelas 9. Apa sih persamaan fungsi kuadrat itu? Di sini Sobat Pijar akan mempelajari tentang bentuk umum, rumus, dan contoh soal persamaan kuadrat. Yuk, langsung saja simak penjelasannya!
Baca juga: Cara Merasionalkan Bentuk Akar dan Sifat-Sifatnya
Pengertian Persamaan Kuadrat
Sebelum kita masuk ke bentuk umum, rumus, dan contoh soal persamaan kuadrat, kita kenalan dulu sama pengertiannya, yuk. Persamaan kuadrat merupakan persamaan suku banyak yang pangkat tertingginya adalah 2 dan berorde 2. Persamaan semacam ini disebut juga dengan persamaan polinomial.
Jadi, Sobat Pijar bisa mengenali persamaan kuadrat dengan melihat bentuk pangkatnya, ya. Kalau pangkatnya lebih dari dua, maka itu bukan persamaan kuadrat. Lalu, jika ordo yang dimilikinya hanya satu atau lebih dari satu itu juga bukan persamaan kuadrat, ya.
Selain persamaan kuadrat, kamu mungkin juga familiar dengan persamaan linear. Namun, keduanya berbeda. Pada persamaan linear pangkat tertingginya adalah 1, sedangkan pada persamaan kuadrat pangkat tertingginya adalah 2.
Bentuk Umum Persamaan Kuadrat
Untuk menyusun persamaan kuadrat, berikut ini adalah bentuk umum persamaan kuadrat:
ax² + bx + c = 0
Keterangan:
a = koefisien dari x² dan
b = koefisien dari x
c = konstanta
x = variabel yang nilainya belum diketahui dan memenuhi persamaan kuadrat.
Salah satu contoh persamaan kuadrat yang bisa kamu simak adalah 20x² + 25x + 30. Bentuk persamaan itu merupakan contoh persamaan kuadrat karena memiliki bentuk umum yang sesuai dengan persamaan kuadrat.
Berbeda dengan itu, kalau Sobat Pijar melihat bentuk persamaan 5x³ + 4x² +3, menurut kamu itu persamaan kuadrat atau bukan? Yup, jawabannya bukan, ya. Bentuk persamaan tersebut bukanlah persamaan kuadrat karena bentuk persamaan tersebut memiliki pangkat tertinggi 3 dengan variabel x.
Apa Saja Rumus Persamaan Kuadrat?
Berikut ini adalah rumus yang bisa digunakan sebagai cara menyelesaikan persamaan kuadrat yang penting untuk Sobat Pijar pelajari lengkap dengan contoh persamaan kuadrat:
1. Memfaktorkan Persamaan Kuadrat
Sobat Pijar tahu nggak ternyata ada banyak lho rumus persamaan kuadrat. Pertama, ada rumus untuk pemfaktoran persamaan kuadrat. Nah, ada yang tahu apa itu faktorisasi? Faktorisasi merupakan merupakan suatu cara untuk menjadikan penjumlahan suku aljabar ke dalam perkalian. Memfaktorkan persamaan kuadrat bisa dilakukan dengan rumus berikut:
menjadi
Supaya lebih mudah dimengerti, coba simak contoh soalnya di bawah ini, yuk.
Akar-akar persamaan kuadrat adalah...
Pembahasan:
atau
Maka faktor persamaan kuadrat adalah x = -4 atau x = 5.
2. Melengkapi Kuadrat Sempurna
Selain penyelesaian dengan pemfaktoran, kamu juga bisa menyelesaikan operasi persamaan kuadrat dengan melengkapi kuadrat sempurna. Ada yang tahu apa itu melengkapi kuadrat sempurna? Melengkapi kuadrat sempurna adalah metode mengganti bentuk umum menjadi bentuk kuadrat sempurna.
Contohnya:
atau
Metode ini mengubah bentuk (pemfaktoran) menjadi seperti di bawah ini:
3. Rumus ABC
Terakhir, kamu juga bisa menyelesaikan persamaan kuadrat dengan menggunakan rumus ABC. Rumus ABC persamaan kuadrat memanfaatkan nilai (a, b) dan (c) dari suatu persamaan kuadrat untuk mendapatkan akar-akar ax² + bx + c = 0. Nilai x₁ dan x₂ dapat dicari dengan menggunakan rumus di bawah ini:
x₁, ₂ = -b ± √b² - 4ac / 2ac.
Contoh Soal Persamaan Kuadrat
Agar lebih memahami tentang persamaan kuadrat, maka sebaiknya kita berlatih dengan soal persamaan kuadrat. Berikut ini beberapa akar-akar persamaan kuadrat contoh soal yang bisa Sobat Pijar kerjakan:
1. Akar-akar persamaan kuadrat adalah….
A. atau
B. atau
C. atau
D. atau
Jawab
Diketahui :
Ditanya : akar-akar persamaan kuadrat
Dijawab : menggunakan rumus ABC
Alasan menggunakan rumus ABC dikarenakan tidak bisa dicari nilai p dan q yang memenuhi dan .
Dari persamaan
a=2
b=4
c= -3
Rumus ABC = sehingga
Jadi, jawaban yang benar adalah A.
2. Diketahui persamaan , maka nilai koefisien dari variabel dan serta konstanta secara berturut-turut adalah….
A. -3,1,3
B. -3,0,3
C. 3,0,3
D. -3,0,-3
Jawab
Diketahui :
Ditanya : Nilai koefisien dari variabel dan serta konstanta
Dijawab :
Mengingat koefisien letaknya berdampingan/ menempel pada variabel dan penulisannya adalah angka bilangan riil dan konstanta penulisannya adalah angka bilangan riil tanpa ada variabel. Sehingga koefisien dari adalah -3 dan koefisien x dikarenakan pada persamaan kuadrat tidak sehingga nilai koefisiennya adalah 0 serta konstantanya adalah -3. Secara berturut-turut dapat dituliskan -3,0,-3.
Jadi, jawaban yang tepat adalah D.
_________________________________
Baca juga: Sifat-Sifat Bilangan Berpangkat Positif dan Negatif
Setelah mempelajari materi persamaan kuadrat dan contoh soal persamaan kuadrat di atas, Sobat Pijar sudah lebih paham kan tentang materi ini? Penjelasan yang mudah dimengerti dan contoh persamaan kuadrat memudahkan kita dalam memahami materi.
Nah, selain materi persamaan kuadrat kelas 9, kamu juga bisa menemukan materi matematika lain dan juga bidang studi lainnya di situs Pijar Belajar. Ada IPA, Bahasa Indonesia, dan bidang studi lainnya. Yuk, kunjungi Pijar Belajar sekarang juga!